Top 5 Reasons Commercial HVAC Coils Prematurely Fail

Capital Coil & Air has come across virtually every scenario over the years in which a commercial HVAC coil had to be prematurely replaced, and we have since created an easy guide targeting the main reasons HVAC Coils prematurely fail.

  • Coil Plugging: If you are not changing filters and/or your commercial HVAC coils are not properly cleaned in a timely manner, your coil will actually begin to act as a filter. When dirt builds up on the coil, that blockage prevents heat transfer and can cause an approximate 20% to 40% drop in performance. Dirt adds to the coil resistance and can be a primary cause for your coil to fail prematurely.
  • Vibration: When your HVAC coils are installed near a moving piece of equipment, vibration can occur and cause leaks. You can tell if vibration is the main cause if leaks are near the tube sheet and look like they are slicing through the tube. If/when that happens, the coils should be isolated from the rest of the system to prevent vibration from causing damage. One way to combat this is by oversizing the tubesheet holes, but many manufacturers will not do this. Condenser Coils are usually the most common victims of vibration.
  • Corrosive Environment: This applies to both the air in the environment and inside the tubes. For instance, if there is a corrosive element in the air, it will eat away at the copper tubes; whether you have 0.020” wall or 0.049” wall. This is very common in coastal areas where there may be salt in the air. To keep the costs down from going to a stainless steel or cupro-nickel coil, we usually suggest coating the HVAC coils. Coatings are almost always within your budget, and its application will only add about a week to the overall lead time. Steam condensate and untreated water can cause corrosion within the tubes of HVAC coils as well. If you have a steam coil that has failed before the one year warranty, there’s a great chance that corrosive agents are in the steam, and it’s eating away at the copper tubes.
  • Freeze-Ups: Most people think that when HVAC coils freeze, the water or condensate laying in the coil freezes into ice and it expands causing the tubes to bulge and eventually spring leaks. What really happens is that the coil will freeze in multiple areas simultaneously, and it’s the pressure between these areas that cause the tubes to swell and eventually burst. These are very easy to spot as the leaks will run the length of the tube rather than around the tube.  ALSO be very careful when considering “freeze-proof” coils!  If you remove 5-6 inches from the fin length to make the “freeze-proof” application fit, your coil’s performance will suffer considerably. 
  • System Design: You would be amazed to learn how many HVAC coils were never designed properly for their systems. If there is a design problem, replacing the coil will only waste time and money; while you have done nothing other than duplicate the previous problem. A little known fact in the replacement market is that a high percentage of all our projects are because the coils were built incorrectly or were never designed correctly in the first place. In some cases, owners attempt to improve the coil’s performance by adding additional rows. Most however do this without taking into account the air pressure drop or fluid pressure drop that comes with it.

When dealing with an HVAC coil manufacturer, try to partner up with one who will walk you through the engineering and explain it along the way. Capital Coil & Air has well over a decade of experience and can help you diagnose whatever problem that you are experiencing correctly the first time. We look forward to working with you on your next project!

RELATED POSTS

Four Things That You Need When Buying Replacement Coils

Replacement HVAC Coils: 10 Common Ordering Mistakes

Coil Costs: What Will Make Your HVAC Coils More Expensive?


Syracuse University Athletic Dome Renovation

Capital Coil & Air prides itself on its ability handle all jobs – large or small! We quote anywhere from 25-50 projects/day, and there is typically a very diverse mixture of equipment and overall size & scope of projects that need to be engineered and quoted. The majority of our business comes from repeat customers because they know that we treat every job and request with the same importance – regardless of size. Today’s newsletter highlights one of our largest jobs to date to illustrate the fact that Capital Coil has the ability handle any job…no matter the size and scope.

Capital Coil has long understood that your businesses and customers depend on fast responses, fast engineering, fast shipping, and top-quality products. Again, whether it’s (2) small hot water duct-coils that you need overnighted, or banks of chilled water coils, Capital Coil wants you as our customer to be satisfied that you got a “fair-deal” with us on each and every job.

The Syracuse University Dome (SU Dome), in Syracuse, NY underwent an extensive renovation at a cost of $205 million. The old roof was air-inflated/supported and was replaced with an updated design-frame roof. As part of the total renovation, the building also changed out it bathrooms, Wi-Fi, LED lighting, and entire HVAC system. As part of the renovation, Capital Coil was asked to build (64) chilled water coils as a part of the air conditioning renovation project.Capital Coil

Modular Comfort Systems, located in Syracuse, contacted Capital Coil & Air during the planning and budgeting phase of this project. Modular Comfort Systems is a large and highly respected HVAC Representative in central New York State. After purchasing coils from CCA, they re-sold those same coils, as well as other HVAC equipment to the also very highly respected Burns Bros. Mechanical Contractors – also located in Syracuse. Burns Brothers has been working in HVAC, plumbing and process piping for more than 100 years. Both of these companies are the types of companies that Syracuse University would entrust with such an important and high-profile job.

Capital Coil built (64) free-standing chilled water coils in sizes ranging from (33” x 93”) – (33” x 118”). All (64) coils are (8) rows with 304 stainless steel casing, increased tube wall thickness of .035”, with connections built and oriented at 90 degrees to facilitate ease of piping. The coils have all been highly engineered and are exactly correct for this application/project. Each coil weighs over 1,000 lbs, so Capital Coil split up the total order into (2) separate shipments, two weeks apart, in order to help the contractor receive the delivery.

The point of this case-study is to show how proud Capital Coil & Air is to have been tasked with building coils for such a high-profile project. Capital Coil is also proud to have worked with professional organizations like Modular Comfort Systems and Burns Brothers Mechanical. But regardless of the size of the project, you’ll receive the same attention and support as anyone else who reaches out for our assistance. Please contact us as we look forward to working with you on your next project!!

RELATED POSTS

Boca Raton Hospital Covid-19 Care Condenser Coils

10 Things To Know About Chilled Water Coils

Guidelines For Air Velocities

Coils and Counter-flow: 5 Common Questions


5 Work Day Quick-Ships on HVAC Coils – Why Capital Coil does it right

Day 1 – 38% of all orders sent to Capital Coil are on some kind of quick-ship, whether it be on a (5 day, 10 day, or 15 day). We enter the order immediately so that all departments in the plant have the project in their systems and are ready to move on it right away. The coil isQuick-Ships engineered, routing sheets are sent to the shop floor, and everybody now knows what needs to be built. 

Day 2 – Sheet metal casings are cut and sized, headers and connections are fabricated, while tube sheets are fabricated.

Day 3 – All tubing and fins are cut, stamped and assembly begins. You can see what the coil will look like upon final assembly at this point. Coils can be seen sitting on assembly tables.

Day 4 – Tubes are then expanded into the fins, and keep in mind that this is not a short process. Headers are then brazed to the tubes, and if there are return bends, they are connected. The coil is completely assembled and moved to the testing tank. The coil is tested under water for 20 minutes at 550 PSI. About 3% of coils have small leaks someplace in the brazing and are sent back to braze again.

Day 5 – The coil is crated and sent to shipping for routing to the customer. Then most importantly, your coil will be shipping in the guaranteed (5) days.

As you can see by this description, with quick-ships, there is not a lot of room for error in the timing and shipping with OEM HVAC replacement coils. We’ve been doing this for a while now, and we’ve had an approximately (97%) success rate fulfilling all quick-ship requests. We offer quick shipments 365 days per year, with both (10) day shipments & (15) day shipments also available for lower premiums.

diagram 

RELATED POSTS

Are Your Quick-Ships Shut Down When Needed Most???

How to make your HVAC OEM Replacement Coil Buying Process Easier??

OEM Replacement Coils: Repair or Replace???


Tips on Hand Designation & “Counter-flow”

Are your chilled water coils right hand or left hand?  Are you looking into the face of the coil with the air hitting you in the back of the head?  What exactly is counter-flow and why is it important?  Are you completely confused by why right hand vs. left hand even exists?  Most manufacturers probably do not know or understand the technical reasons themselves.

First, let’s figure out what coils even need a hand determination.  Chilled Water Coils, Direct Expansion (Evaporator) Coils, and Condenser Coils are the only coils that need this figured on almost every job.  Hot Water Coils, Booster Coils, and Steam Coils rarely need this determination!  The reason for this is when the coils are only 1 or 2 rows deep, they can be flipped over.  When a chilled water coil is 3+ rows deep, hand determination is much more important because it needs to be counter-flow.  With most suppliers determining hand designation with the air hitting you in the back of the head….do you want the connections on the right or left?

Chilled Water CoilsYou’ve probably heard the term “counter-flow” countless times, but here’s the simplest explanation.  For peak performance, you want the air and the fluid traveling in opposite directions through the coil.  Is it the end of the world if your coils are not counter-flow?  The short answer is no, but you will lose anywhere from 12-15% of the output.  So if your coils are piped incorrectly, don’t expect to get the full performance.  Steam and hot water coils are 1 or 2 rows deep, so again, counter-flow is pretty much irrelevant.  However, it can make a BIG difference with any chilled water or direct expansion coils (3-12) rows deep.

We also get asked many times “what is the proper way to pipe coils?”  Put simply, steam coils should always be fed on the highest connection and the return on the lowest connection.  Water coils should always be fed on the lowest connection and returned on the top connection to ensure that all of the tubes are are fed the same volume of fluid. 

Hand designation and counter-flow are two pretty simple concepts when they are properly explained.  When dealing with a HVAC coil manufacturer, partner up with one who will walk you through the engineering and explain it along the way.  Capital Coil & Air has well over a decade of experience in handling pretty much any scenario that you may come across, so we want to be your coil resource for any and all projects. Please give us a try on your next job!

RELATED POSTS

Why are HVAC Coils Copper Tube and Aluminum Fin?

Did You Know? Facts about Commercial HVAC Coils

You should never have to worry about performance on replacement coils…Well, almost never!

 


Steam Distributing (Non-Freeze) Coils: The Accidental Coils

Steam Distributing CoilsWere you aware that Steam Distributing coils or “Non-Freeze” steam coils were essentially discovered by accident? First, it must be mentioned that there is no such thing as a 100% “Non-Freeze” steam coil because under the right conditions, any coil can freeze. As such, Capital Coil tries to steer clear of the term “Non-Freeze” because it is a mischaracterization. Steam Distributing Coils is the correct terminology that Capital Coil uses when speaking about steam coils that see entering air temperatures under 32* F. Trapped condensate in the tubes and/or headers, coupled with entering air temperatures below 32*F over the face of the coil, creates a situation with a near-100% certainty that your steam coil will freeze. Because of this, there is no magical solution to fully eliminate freezing your coil, which again is why Capital Coil does not use the term “Non-Freeze”.

Steam turns to condensate little by little as it travels through the coil. Lower pressure steam turns to condensate faster than higher pressure steam!! The longer the tube length in the coil, the earlier the condensate is formed, and the longer it has to travel through the tubes. One very important fact to always remember is that too much condensate in a steam coil IS NEVER A GOOD THING…under any circumstances! Because of this requirement, everything is designed to ensure the removal of all condensate from the coil. Systems are heavily designed with float & thermostatic traps, vacuum breakers, and placement of piping to help get rid of any remaining condensate.

Another headache that occurs when condensate freezes is that it creates a “water-hammer”. A “water-hammer” can best be described as a loud banging noise as the steam is coming into contact with the condensate in the coil. It does not allow the steam to be evenly distributed across the face of the coil…again not a good thing!

At the inception of the HVAC industry, steam coils were originally designed to be shorter in length because there was not a good way to evacuate condensate. In an effort to make steam coils longer in length, the concept of a steam coil containing a tube within a tube was invented. The steam feeds only the inner tubes, which travels the entire of the length of the outer-tube. Holes are placed every 12” with the inner tube releasing condensate to the outer-tube. The idea is that the condensate is slowly and evenly “distributed” across the entire length of the coil. Heating is also evenly applied across the coil’s face, and if the casing is pitched at a downward angle, condensate cannot remain trapped. It was later discovered as an added bonus that under most circumstances these coils will not freeze. So while the concept was never designed or intended to become known as “Non-Freeze”, they are now used in almost all projects dealing with air temperatures below 32*F. Please keep in mind that you will still need all of the other steam protective devices in the system, including the freeze-stat, but all in all, it is much more difficult to freeze coils today than it was 30-40 years ago. Necessity may be “the mother of invention” but this great concept was discovered accidently.

Capital Coil is available for all of your coil-related trivia needs, so please don’t hesitate to reach out whenever we can be of assistance.

RELATED POSTS

Different Types of Steam Coils?

Frozen Steam Coils: How Do You Prevent This?

Commercial Steam Coils: Lengths & Controls

Steam Distributing Coils


Cooling Coils & Moisture Carryover

Moisture carryover is present on cooling coils where dehumidification happens.  Many people do not think it’s a problem…until you have moisture running down ductwork or spewing all over the inside of an air handler. If you’ve ever experienced that then you probably know all of these rules regarding moisture carryover.

  • Entering air temperatures of 80/67 of return air in the Northeast carry far less moisture than an outside 95/78 entering air temperature in Florida. Outside air always has more moisture. Cooling Coils

    -Your location plays a part as well. The drain pans will absolutely have be sized differently. Florida’s will be much larger in size.

  • Fin design is irrelevant when it comes to moisture carryover. Whether you have copper corrugated fins, or aluminum flat fins, plate fins or even the old fashioned spiral fins, none of it has any effect on moisture carryover.
  • Lastly, be careful when installing a new chilled water or DX (Evaporator) Coils in a system. Many end users like to increase the airflow on older coils because those old coils can act like filters, the fins are covered in dirt/dust and you’re not getting the same airflow through the coil. This dirt on the coil also semi-prevents moisture carryover. When that brand new chilled water coil is installed, the airflow might be higher than that of 550 ft/minute, which of course will cause moisture carryover problems. 

Please give us a call with any questions about your coil, your system or its design. Capital Coil is here to help you avoid situations like the one described in this post, and we would love for the chance to work with you!

 

RELATED POSTS

10 Things You Need to Know About Chilled Water Coils

Top 10 Chilled Water Coil Facts

Chilled Water Coil Circuiting Made Easy


Coils and Counter-flow: 5 Common Questions

1)  Coils and counter-flow?

The first thing to remember about coils and counter-flow is that chilled water coils are always built to be piped in counter-flow. This means that the air flows in the opposite direction as the water. For example, with counter-flow, the air flows through rows 1-8, while the water runs through rows 8-1. Water always travels through the coil in the opposite direction of the air; hence the term “counter-flow.”  Direct Expansion Coils (Evaporator Coils) are also piped in the same manner.

With that said, what happens when you do not pipe cooling coils counter-flow? Almost all coil selection programs you will see or use will be based on counter-flow conditions. If you opt to not counter-flow a chilled water coil, you’ll have to reduce the coil’s overall performance by a certain percentage. That percentage reduction varies based on each coil’s unique dimensions, but a reliable estimate is a loss of 8-12%. Simply piping the coils in the correct manner from the beginning would seem to be the easiest and most cost-effective solution.

2)  Why do you feed from the bottom of the coil?

Chilled Water Coil

You always want to feed a water coil from the bottom connection so that the header fills from the bottom on up and feeds every tube connection evenly. All tubes must be fed evenly with the same amount of water. If you try to feed the header from the top, you greatly increase the risk of “short circuiting” the coil and having a higher water flow through the top tubes in the coil.

3)  What is a Water Hammer in a Steam Coil?

On a long Steam Coil, you will be hard pressed to get the steam through the length of the coil. Slowly but surely, that steam converts into condensate, which is pretty much the worst thing that can happen to any system. If not evacuated, the condensate just lays in the coil when the system is shut off. This problem comes into play when the steam is turned back on and meets the condensate laying inside the coil. In addition to the noise, the steam and condensate cause huge amounts of additional stress on the coil’s joints. As a result, over time, your coil will inevitably fail.

4)  What else happens if you do not evacuate condensate?

When you cannot or do not evacuate the condensate on long steam coils, the condensate ends up blocking the steam. A steam coil should never feel cool to the touch, but when condensate blocks steam, one part of the coil will be warm while the other will be cool. Again, that should not happen. Steam coils are interesting in that they are more dependent upon the system and installation than any other type of coil. A steam coil must be pitched to the return end of the coil. Obviously, steam is not water. Traps, vacuum breakers and other steam accessories must be installed and located properly for the system to function.

5)  Is it necessary to pipe steam and/or hot water coils in counter-flow?

Simply put – no! Circuiting a coil is only necessary to ensure the connections are on the side of the coil that you want. The rows and tubes in the coil dictate how and where you feed, but the steam supply always needs to be the high connection. This method ensures that the leaving condensate is on the bottom of the coil and below the lowest tube within the coil. Whatever else you do, know that the condensate must leave the coil!

If you have any questions or need assistance with ordering and/or installation, please contact a sales engineer at Capital Coil & Air. We will walk with you step-by-step through your entire project should you require any assistance. CALL OR E-MAIL US!  We look forward to the opportunity to work with you on your future projects.

 

RELATED POSTS

Tips on Hand Designation & Counterflow

Chilled Water Coils & Moisture Carryover

Chilled Water Coil Circuiting Made Easy


Why are HVAC Coils Copper Tube and Aluminum Fin?

Chilled Water CoilsIt’s really not a coincidence why HVAC coils use copper tubes and aluminum fins. Copper is great for heat transfer, and aluminum – while still very effective -is simply not as good. The first goal of any HVAC coil is to cool or heat. Heat transfer is always the first consideration. Cost is the second. Copper works well for the tubes, but would be prohibitive for the fins. You would need a compelling reason for the fins to be copper, and sometimes there are reasons to do just that. However, the vast majority of HVAC coils that you see are built with copper tubes and aluminum fins. That combination offers the most effective heat transfer at the most efficient cost. 

To begin, fins are responsible for a surprising 65% – 70% of the heat transfer on any coil, while tubes are responsible for the remaining 30% – 35%. Additionally, in order for your coil to work at optimum performance, you need to have a terrific fin/tube bond. Fins are known as secondary surface, while tubes are referred to as primary surface. While this may seem counterintuitive, the secondary surface is responsible for twice the amount of heat transfer as the primary surface.

The tubes are expanded into the fins, and for that reason, the fins become secondary. As mentioned above, the fins are responsible for 65% – 70% of all heat transfer that takes place in the HVAC coil.  When you think about it logically, it really makes sense. At 8 fins/inch or 10 fins/inch, and with fins that run the height and depth of the coil, there is much more fin surface than tube surface. However, it also points out how good the fin/tube bond must be in the expansion process. Without that bond, the fins cannot perform their job.

Understanding the role and importance of the materials used in HVAC coils cannot be overstated. There is a distinct reason why the vast majority of coils are constructed using these materials. While coils can be built with other tube materials, such as steel, 304/316 stainless steel, 90/10 cupro-nickel, as well as various different fin materials, none of these are as efficient or economical as copper/aluminum.

Capital Coil & Air is here to help you with any and all coil selections, and we look forward to working with you on your next project.

RELATED POSTS

Why Is Fin Design On HVAC Coils Important?

Top 10 Tips to Measuring Coils

Did You Know? Facts about Commercial HVAC Coils


Chilled Water Coils – Circuiting Made Easy

Chilled Water Coil

Circuiting chilled water coils is one of life’s great challenges in the coil business. You’re bound to run across folks with years of experience in the industry that can not effectively explain this concept. While not the most exciting of subjects, the necessity of circuiting chilled water coils can not be overstated. Capital Coil & Air has attempted to simplify the idea of circuiting as much as possible.

For starters, circuiting chilled water coils is ultimately up to the performance of those coils. Circuiting is really a balancing act of tube velocity and pressure drop. In other words, think of a coil as a matrix. Each coil has a specific number of rows, and a specific number of tubes within each row. For example, a chilled water coil might be 36 inch fin height and 8 rows deep. The coil has 24 tubes in each row, and multiplied by 8 rows, there is a total of 192 tubes within the coil. While you can try to feed any number of tubes, there are only a few combinations that will work.

    • Feeding 1 tube – you will be making 192 passes through the coil, which will essentially require a pump the size of your car to make that process work.
    • Feeding 2 tubes – equates to 96 passes, and your pressure drop will still be enormous.
    • Feeding 3 tubes – 64 passes, which is still too many.
    • Feeding 4 tubes – See above.
    • Feeding 5 tubes – Impossible as 5 does not divide evenly into 192 (passes).
    • Feeding 6 tubes – Still constitutes far too many passes, which again leads to additional pressure drop.
    • Feeding 7 tubes – Same rule for feeding 5 tubes.
    • Feeding 8 tubes –  Same rule for feeding 6 tubes.
    • Feeding 24 tubes – This feed consists of 8 passes, which is in the ballpark, and with a pressure drop you can live with.
    • Feeding 32 tubes – 32 tubes will see 6 passes. You might see a slight decrease in performance, but it’s off-set by a continuously better pressure drop.
    • Feeding 48 tubes – The magic combination, as 4 passes typically elicits the best performance and pressure drop simultaneously.

 

Rule #1: The number of tubes that you feed must divide evenly into the number of tubes in the chilled water coil.

Rule #2: The chilled water coil must give you an even number of passes so that the connections end up on the same end.

Rule #3: Based on the number of passes, you must be able to live with the resulting pressure drop. Acceptable tube velocity with water is between 2 and 6 ft. per second.

You’re bound to run into different terminologies depending on the manufacturer. More times than not, the different verbiage confuses more than it clarifies. However, understanding the basic tenets of chilled water coil circuiting will remove much of the perceived difficulty.  

Related Posts

Coils and Counter-flow: 5 Common Questions

Chilled Water Coils & Moisture Carryover

Top 10 Things You Need to Know About Chilled Water Coils


Frozen Steam Coils: How Do You Prevent This?

Regardless if you have steam coils or steam distributing (non-freeze) coil, you can freeze ANY coil.  When freezes happen, everyone immediately looks to the steam coil as the cause.  When in fact, there are numerous reasons that must be looked at well before the coil.

Freezes generally happen in older systems, however if your new system is not maintained properly or correctly installed, your steam coil can and will freeze.  For instance, you’d be surprised at how many times dampers are left open, controls fail, freezestats don’t work, etc.Steam Coils

In a Standard Steam or Steam Distributing Coil, a freeze-up can occur when condensate freezes within the tubes of the steam coil.  The two most common reasons for freezing steam coils are the steam trap and the vacuum breaker.  The function of steam trap is to remove the condensate as soon as it forms.  Condensate usually collects in the lowest part of the coil.  If your steam trap isn’t installed properly, that condensate will lay in the coil and it will inevitably freeze as soon as it sees outside air.  The vacuum breaker also helps clear the condensate, minimizes water hammers, and helps with uneven temperatures. This must be installed on the control valve and always above the steam trap.

Unfortunately, there are no ways to determine exactly where your steam coil will freeze.  And a common misnomer is that the condensate turns to ice and the expansion is what causes the tubes of the coil to pop.  In reality, it’s the pressure that builds up between freeze points.

Here’s couple tips in your coil design that can help prevent your standard steam and steam distributing coils from freezing:

  • Standard steam coils should NEVER see any outside air below 40 degrees.  If it does, steam distributing is the only way to go!
  • 5/8” OD Steam distributing coils over 72” long are recommended to have a dual supply
  • 1” OD Steam distributing coils over 120” long are recommended to have a dual supply
  • Make sure your steam coil is pitched if possible.  This slopes the condensate to the return connection making it easier to remove the condensate

Give Capital Coil & Air a try on your next project. Our engineering, pricing and service is the best in the industry!

RELATED POSTS

Heating Season Will Soon Be Upon Us

Commercial Steam Coils; Lengths & Controls

Types of Steam Coils