Chilled Water Coil Circuiting Made Easy

Chilled Water Coil

Circuiting a chilled water coil is one of life’s great challenges in the coil business. You’re bound to run across folks with years of experience in the industry that can not effectively explain this concept. While not the most exciting of subjects, the necessity of circuiting chilled water coils can not be overstated. Capital Coil & Air has attempted to simplify the idea of circuiting as much as possible.

For starters, circuiting a chilled water coil is ultimately up to the performance of that coil. Circuiting is really a balancing act of tube velocity and pressure drop. In other words, think of a coil as a matrix. Each coil has a specific number of rows, and a specific number of tubes within each row. For example, a chilled water coil might be 36 inch fin height and 8 rows deep. The coil has 24 tubes in each row, and multiplied by 8 rows, there is a total of 192 tubes within the coil. While you can try to feed any number of tubes, there are only a few combinations that will work.

    • Feeding 1 tube – you will be making 192 passes through the coil, which will essentially require a pump the size of your car to make that process work.

 

    • Feeding 2 tubes – equates to 96 passes, and your pressure drop will still be enormous.

 

    • Feeding 3 tubes – 64 passes, which is still too many.

 

    • Feeding 4 tubes – See above.

 

    • Feeding 5 tubes – Impossible as 5 does not divide evenly into 192 (passes).

 

    • Feeding 6 tubes – Still constitutes far too many passes, which again leads to additional pressure drop.

 

    • Feeding 7 tubes – Same rule for feeding 5 tubes.

 

    • Feeding 8 tubes –  Same rule for feeding 6 tubes.

 

    • Feeding 24 tubes – This feed consists of 8 passes, which is in the ballpark, and with a pressure drop you can live with.

 

    • Feeding 32 tubes – 32 tubes will see 6 passes. You might see a slight decrease in performance, but it’s off-set by a continuously better pressure drop.

 

  • Feeding 48 tubes – The magic combination, as 4 passes typically elicits the best performance and pressure drop simultaneously.

Rule #1: The number of tubes that you feed must divide evenly into the number of tubes in the chilled water coil.

Rule #2: The chilled water coil must give you an even number of passes so that the connections end up on the same end.

Rule #3: Based on the number of passes, you must be able to live with the resulting pressure drop. Acceptable tube velocity with water is between 2 and 6 ft. per second.

You’re bound to run into different terminologies depending on the manufacturer. More times than not, the different verbiage confuses more than it clarifies. However, understanding the basic tenets of chilled water coil circuiting will remove much of the perceived difficulty.  Check out Capital Coil’s Chilled Water Coils product page.

 

Related Posts

Coils and Counter-flow: 5 Common Questions

Chilled Water Coils & Moisture Carryover

Top 10 Things You Need to Know About Chilled Water Coils


Differences Between Commercial & Industrial Coils??

The best performance you can get out of commercial coils is with copper tubes/aluminum fins. An extremely important fact to take into account is that when you change the materials of construction to an industrial coil, there’s always a drastic change in the performance. 

The explanation is really quite simple: when we build a stainless steel or 90/10 cupro-nickel coil, the materials don’t match up in terms of heat transfer to copper tubes/aluminum fins. So what does that mean? Using a chilled water coil as an example – you have a (4) row chilled water coil with copper tubes/aluminum fins, and you want to change to stainless steel. You will need to move to an (8) row coil to meet that same performance.                                                                                                                                                                          Commercial Coils

What conditions require these types of materials? The most common is with high pressure applications. Anything above 200 psig requires that you change construction materials from copper tube/aluminum fin to a special material that is able to work better under those conditions. The other instances are when you’re dealing with high temperatures or corrosive atmospheres. 

Capital Coil & Air manufactures and designs a wide assortment of heavy-duty industrial coils to withstand the environment of industrial applications.  Standard and custom designs are available for new and retrofit installations.  Our industrial coils are manufactured from quality materials that are heavier grades and thicknesses.  This ensures dependable performance and longevity, even under the most demanding conditions. While most manufacturers throw out astronomical prices or lead times that can better be explained as “months” rather than weeks, Capital Coil’s lead times are (4-5) weeks for cupro-nickel and (5) weeks for stainless steel.  

Whether it’s for boiler air preheating, pulp and paper drying process, lumber drying process, textile drying process, chemical heating process, Capital Coil & Air provides high quality industrial coils designed for easy maintenance and low operating costs.  With capabilities to build fluid coils for water, glycol, oil, and other liquids as well as refrigerant coils and steam coils for high pressures, we can easily meet all of your industrial coil requirements!

RELATED POSTS

Coil Costs: What Will Make Your HVAC Coils More Expensive?

Why are HVAC Coils Copper Tube and Aluminum Fin?

Top 5 Reasons Commercial HVAC Coils Prematurely Fail